Help Find A Cure For ALS!

Research at the Day Lab

Research at the Day Lab


Cecil B. Day Laboratory for Neuromuscular Research The Angel Fund for ALS Research supports the ALS research at the Cecil B. Day Laboratory for Neuromuscular Research at UMass Medical School in Worcester, MA. The lab is under the direction of Dr. Robert H. Brown, Jr.

Dept of Neurology at UMass Medical School

ALS Research Update 23-November-2020

    By Dr. Robert H. Brown, Jr. It is a pleasure to provide this year end research update on the Angel Fund’s ALS research program at UMass Medical School, which continues along several fronts.
  • First, we are continuing our investigations of the compound we call afinersen for ALS arising from mutations in the C9orf72 This compound, an antisense oligonucleotide (ASO), has continued to look promising in the initial pilot trials in a single individual.  We have engaged the FDA regarding opportunities to expand our trial; these efforts are underway.
  • Second, we are continuing to pursue our program to suppress the SOD1 gene using a different type of compound, known as a microRNA, delivered into the spinal fluid using an adeno-associated virus (AAV). Some aspects of this program are being studied in detail in our laboratories; at the same time, an expanded human trial is being planned by a company (ApicBio) in Cambridge.  Our initial report of our pilot study of this modality was published as a Brief Report in the New England Journal of Medicine last summer (Mueller CM et al., New Engl J Medicine, 383(2):151-158).  It is particularly exciting that in the same issue, the Cambridge company, Biogen, reported that an ASO that they are investigating, called tofersen, suppresses SOD1 gene in many patients with SOD1 gene mutations.
  • Third, in parallel studies we have explored the use of an ASO to suppress the ALS gene known as FUS, which unfortunately often causes devastatingly rapid ALS in young adults (and even children). We have been deeply grateful in this project initially to work with a California company (Ionis) with expertise in this area.  We have extensively tested an ASO from Ionis that suppresses the FUS gene effectively in patient motor neurons in culture.  A collaborator in the program, Dr. Neil Shneider at Columbia University, has now used this anti-FUS ASO in pilot studies in several FUS patients.
  • Read more.

Silencing of an ALS gene safely delivered to patients in UMass Medical School study

Synthetic microRNA treatment targets mutant SOD1 gene that causes ALS

By Jim Fessenden

UMass Medical School Communications

July 08, 2020
mueller-brown-660.png
Christian Mueller, PhD, and Robert Brown Jr., DPhil, MD
UMass Medical School and Massachusetts General Hospital are the first to safely treat two research participants with a synthetic microRNA, delivered into the spinal fluid, designed to silence a human disease-causing gene. Details of the treatment, which targeted the mutant SOD1 gene that causes ALS, appear in the New England Journal of Medicine. The study was led by Robert H. Brown Jr., DPhil, MD, the Leo P. and Theresa M. LaChance Chair in Medical Research, professor of neurology and director of the Program in Neurotherapeutics at UMMS; and Christian Mueller, PhD, associate professor of pediatrics at UMMS, in collaboration with Merit Cudkowicz, MD, director of the Sean M. Healey & AMG Center for ALS, and chief of neurology at MGH and the Julianne Dorn Professor of Neurology at Harvard Medical School; and James D. Berry, MD, MPH, the Winthrop Family Scholar in ALS Sciences and chief of the MGH Division of ALS and Motor Neuron Diseases at the Sean M. Healey & AMG Center for ALS at MGH.   Read more by clicking here. Read the NE Journal of Medicine article by clicking here.  

Year in Review 2019 – 2020



Dr. Robert Brown, Jr. UMass Medical School

The last year has seen unprecedented progress in clinical trials in ALS. A collaborative team involving UMass Medical School, the Mayo Clinic and the Massachusetts General Hospital reported the first-ever, placebo controlled study of stem cell therapy in ALS. The trial involved harvesting bone marrow stem cells and then returning them to each participant. The study, not only documented safety but showed a benefit in a sub-group of more rapidly progressing patients. This has led to a much larger controlled trial now underway. At UMass, three programs to suppress activity of mutant genes were initiated.

• One entails using a virus to deliver the gene-suppressing agent (a microRNA) to the spinal cords of two patients with familial ALS caused by SOD1 gene mutations.

• Another involved using different approach, known as an anti-sense oligonucleotide (ASO), to target the gene C9orf72.

• And a third, undertaken collaboratively with Columbia University and a company in California, Ionis, targeted the FUS gene. In these pilot programs, safety has been documented. Close follow-up and monitoring are underway to determine if these therapies are beneficial.

Outside these academic programs, two other achievements this year have been noteworthy.

• One was the demonstration by the Cambridge company Biogen that an ASO it developed with Ionis to target the SOD1 gene appeared to be slowing disease progression, at least in some rapidly progressing individuals.

• Another was a preliminary report by the company Amylyx that a two compound therapy it developed for sporadic ALS also appeared to be beneficial. The UMass ALS team was one of several sites involved in the Amylyx study.

Beyond these trial programs, the UMass ALS group had a banner year in ALS discovery.

We have completed trials of two different ALS drugs in ALS mice, with a third now underway. We have nearly completed an extensive study of how DNA mutations in the ALS gene C9orf72 alter chromosome folding and function in motor neurons of patients. And, we have continued efforts to develop new biomarkers for ALS.

• One involves a method of imaging of spinal cord that permits a quantitative measure of how effectively motor nerves transport materials from the muscle up to the spinal cord (axonal transport).

• Another, undertaken in collaboration with a team headed by Dr. Eran Hornstein at the Weizmann Institute in Israel, involves quantifying levels of a critical type of RNA (“microRNA”) in the spinal fluid. A junior faculty fellow supported in part by the Angel Fund, Dr. Claudia Fallini, demonstrated that a drug therapy could correct an ALS-related defect in the nuclear membrane of ALS neurons in cell culture; this work was co-led by Dr. John Landers (a former Angel Fund fellow). Another junior faculty member supported partially by the Angel Fund, Dr. Sandra Almeida, has collaborated with Dr. Fen-Biao Gao to study and publish mechanisms of toxicity of adverse proteins made by the C9orf72 gene.

All of us on the UMass ALS Team remain profoundly grateful to the Angel Fund, and the scores of supporters for their continuing generosity and support of our research program.

 
Watch the video.


Robert Brown, Jr., D.Phil., M.D.

We will find the cure!!

“I get out of bed with a smile on my face because there is now optimism. It may prolong my life, it may save my life, but that’s something no one before me has had,”

Richard Kennedy - President

The Angel Fund is special.

We are not a national charity – we are local. We have very low overhead and administrative costs. Our offices are located in the law firm of Nigro Pettipet and Lucas, courtesy of Directors Jan and Eugene Nigro. That means that The Angel Fund has no rent, no utility bills, no high-paid executives. Angel Fund President Rich Kennedy and the board members are not paid.

Why are they so passionate?

Because most have lived through the heartbreak of seeing their loved one live with ALS and lose their battle to this horrific disease. They have made a commitment to support Dr. Brown and his researchers until a cure is found, the goal of our original Angel, Ginny DelVecchio. They have a sense of urgency to find a treatment and cure by supporting the gene silencing therapy. We know the patients and their families – and the patients know us.

The Angel Fund Mission

Our mission is to support ALS (Lou Gehrig's Disease) research and scientific investigations at the Cecil B. Day Laboratory by raising funds through events, campaigns, foundation grants and numerous other community outreach activities, to aid in finding a cause, treatment and cure for ALS.

Angel Fund supporters make a difference in fighting ALS, and you can be one of them.